metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Yong-Hao Ye, Ming-Qian Feng, Ying-Lao Zhang and Chang-Hong Liu*

College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China, and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail: changhong_liu2223@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 298 KMean σ (C–C) = 0.008 Å R factor = 0.056 wR factor = 0.159 Data-to-parameter ratio = 14.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis{*N*-[2-(2-hydroxyethylamino)ethyl]salicylideneimine}chromium(III) chloride

The title compound, $[Cr(C_{11}H_{15}N_2O_2)_2]Cl$, is a mononuclear chromium(III) complex with a distorted octahedral geometry defined by an N_4O_2 donor set.

Received 28 March 2007 Accepted 4 May 2007

Comment

Schiff bases obtained by condensation of *N*-2-hydroxyethylaminoethylamine and salicylaldehyde or analogues (*L*) have strong coordination abilities to transition metal ions. Recently, many such metal complexes have been structurally characterised: zinc(II) (Usman *et al.*, 2003; You *et al.*, 2004), cobalt(III) (Zhu *et al.*, 2003), silver(I) (Zhu *et al.*, 2000; Zou *et al.*, 2004), copper(II) (Qu *et al.*, 2004), nickel(II) (Ma *et al.*, 2005) and cadmium(II) (Yang *et al.*, 2004). However, no reports on related chromium(III) complexes have appeared. Here, the crystal structure of the title complex, (I), is described.

The mononuclear chromium(III) complex (Fig. 1) has a structure similar to that found for the cobalt(III) analogue (Zhu *et al.*, 2003), and comprises a complex cation and Cl^- anion. In the cation, the central atom is six-coordinated by four N and two O atoms derived from the two Schiff base ligands, forming a slightly distorted octahedron. In the crystal structure, there is a close association between the complex cation and Cl^- anion (Table 1). The Cl^- anion is stabilized by hydrogen bonding in a hydrophilic pocket located to one side of the cation and defined by two amine NH and two hydroxyl groups.

Experimental

© 2007 International Union of Crystallography All rights reserved Using a similar procedure to that in the literature (Zhu *et al.*, 2003), complex (I) was prepared as follows. Equimolar salicylaldehyde and

Figure 1

The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.

2-hydroxylaminoethylamine were dissolved in anhydrous ethanol. The mixture was stirred to give a clear colorless solution of N-[2-(2hydroxyethylamino)ethyl]salicylideneimine. To this solution was added equimolar CrCl₃·6H₂O in anhydrous ethanol. After standing, dark-blue crystals of (I) were formed. They were isolated, washed with ethanol three times and dried in a vacuum desiccator using silica gel (yield 48%; m.p. 584 K).

Crystal data

[Cr(C₁₁H₁₅N₂O₂)₂]Cl $M_r = 501.95$ Monoclinic, $P2_1/n$ a = 9.818 (7) Å b = 24.895 (18) Å c = 10.431 (7) Å $\beta = 115.724 \ (11)^{\circ}$

Data collection

Bruker SMART CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.795, T_{\max} = 0.920$

V = 2297 (3) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.65 \text{ mm}^{-1}$ T = 298 (2) K $0.37 \times 0.25 \times 0.13 \text{ mm}$

12142 measured reflections 4052 independent reflections 2404 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.069$

$R[F^2 > 2\sigma(F^2)] = 0.056$	289 parameters
$wR(F^2) = 0.159$	H-atom parameters constrained
S = 0.93	$\Delta \rho_{\rm max} = 0.69 \text{ e} \text{ \AA}^{-3}$
4052 reflections	$\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N2-H2···Cl1	0.91	2.55	3.457 (5)	172
N4-H4···Cl1	0.91	2.26	3.152 (4)	168
$O2-H2A\cdots Cl1$	0.82	2.74	3.498 (5)	154
$O4-H4A\cdots Cl1$	0.82	2.35	3.157 (5)	170

C-bound H atoms were included in the riding-model approximation with C-H = 0.93–0.97Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$. The H atoms attached to N and O atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with N-H and C-H distances of 0.90 and 0.96 Å, respectively, and $U_{iso}(H) = 1.2U_{eq}(N)$ and $U_{iso}(H) = 1.5U_{eq}(O)$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The work was supported by the Analytical Testing Fund of Nanjing University for CHL.

References

- Ma, J.-L., You, Z.-L. & Zhu, H.-L. (2005). Acta Cryst. E61, m1258-m1260.
- Qu, Y., You, Z.-L., Liu, Z.-D., Zhu, H.-L. & Tan, M.-Y. (2004). Acta Cryst. E60, m1187-m1188
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Usman, A., Fun, H.-K., Chantrapromma, S., Zhu, H.-L. & Liu, Q.-X. (2003). Acta Cryst. E59, o215-o217.
- Yang, S., Liu, Q.-X., Zeng, W.-J., Zou, Y., Wang, Z.-G. & Zhu, H.-L. (2004). Z. Kristallogr. New Cryst. Struct. 219, 155-156.
- You, Z.-L., Ma, J.-L., Zhu, H.-L. & Liu, W.-S. (2004). Acta Cryst. E60, m1599m1601.
- Zhu, H.-L., Lin, Y.-S., Meng, F.-J., Zou, Y. & Wang, D.-Q. (2003). Acta Cryst. E59 m878-m879
- Zhu, H.-L., Tong, Y.-X. & Chen, X.-M. (2000). J. Chem. Soc. Dalton Trans. pp. 4182-4186.
- Zou, Y., Chen, B., Song, H.-L., Tang, L.-L., Xiong, Z.-D. & Zhu, H.-L. (2004). Z. Kristallogr. New Cryst. Struct. 219, 261-262.